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Abstract—High penetration of intermittent renewable 

generators can substantially increase the variability and 

uncertainty in power system operations. Energy storage and 

demand response have been proposed as resources that can be 

used to mitigate this uncertainty and variability. This paper 

describes planning system that couples a stochastic weather 

model, renewable generation models that are driven by the 

weather, a stochastic production simulation model, and a system 

stability model.  The system is used to simulate operation of the 

California grid with 33% variable renewable generation in the 

year 2020. The values of energy storage and demand response 

are estimated by identifying the avoided costs of the 

conventional hydro and fossil resources that they displace when 

providing regulation, load following, and energy arbitrage 

functions. The impacts on system stability are also assessed. 

 

Index Terms-- power generation planning, power generation 

dispatch, power system economics, wind energy, solar energy 

I. PLANNING SYSTEM WITH UNCERTAINTY 

California has established one of the most aggressive 
renewable energy goals in the country – requiring 33% of total 
electricity sold be from renewable energy generation by the 
year 2020.  Increased contributions from wind and solar 
resources needed to meet this goal will substantially increase 
the variability and uncertainty in generation resources 
available to the State’s grid operators.  

The planning system shown in Fig. 1 has been developed 
to estimate the value of technologies in the context of this high 
degree of uncertainty and variability [1]. The system builds 
upon and extends previous studies conducted by the California 
Independent System Operator (CAISO) and the California 
Energy Commission [2, 3, 4].   

Some key features of the planning system include: 

 use of physics-based atmospheric models and 
ensemble forecasts to capture uncertainty, 

 conversion of weather trajectories into ensembles of 
renewable generation and net load trajectories, 

 day-ahead stochastic unit commitment with hourly 
time steps, 

 economic dispatch at five-minute intervals, and  

 system stability checks at sub-second intervals using 
an electromechanical system simulation model 

 

Figure 1. Components of the Planning System 

Section II of this paper describes the atmospheric models, 
including the methods used to capture uncertainty and to 
generate the ensemble of weather trajectories. Section III 
describes the production simulation model that is used to 
optimally schedule production from the dispatchable 
resources, including storage and demand response. Section IV 
provides some price and value estimates provided by the 
production simulation model. Section V provides key results 
of the regulation and stability analyses. Finally, the paper is 
summarized in Section VI. 

II. ATMOSPHERIC AND RENEWABLE GENERTOR MODELING 

A.  Weather Model Description 

The open-source code Weather Research and Forecasting 
(WRF) was used to develop a multi-scale model of the 
Western U.S. to simulate weather conditions that drive 
renewable generators [5]. The three-dimensional governing 
equations in WRF are the conservation of momentum from 
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Newton’s laws, the conservation of mass given by the 
continuity equation, and the conservation of energy described 
by the first law of thermodynamics. The model also 
incorporates the ideal gas law, which describes the 
relationship among density, volume, and temperature. 

Numerous physics schemes are available in WRF to 
parameterize sub-grid scale meteorological phenomena such 
as turbulent mixing in the planetary boundary layer and 
surface moisture and heat exchange with the atmosphere. The 
large suite of available physics options and robust numerical 
core algorithms makes WRF suitable for atmospheric 
simulations on scales from meters to thousands of kilometers. 

A grid size of 3 km was used in areas of California where 
there are high concentrations of wind and solar resources. A 
grid size of 9 km was used in other parts of California, and a 
grid size of 27 km was used to model the weather in the rest of 
the western U.S. Fifty terrain-following vertical levels were 
used. Output was generated at 15 minute intervals.  

The atmospheric ensemble forecast system quantifies 
model uncertainty, and quantifies the evolution of the 
atmospheric probability distribution function [6].  The two 
major sources of uncertainty in the day-ahead forecasts are 
uncertainty about the model physics parameterization and 
uncertainty about the true initial state of the atmosphere. Both 
approaches were evaluated for this analysis (note that they are 
not mutually exclusive).  For the reasons discussed below, it 
was determined that for a day ahead forecast, the uncertainty 
due to physics parameters was greater and of higher relevance 
to the objectives of the present study than the uncertainty due 
to initial conditions. 

The uncertainty over model physics parameterization is 
converted into an ensemble of weather trajectories using a 
multi-physics analysis. The multi-physics ensemble approach 
is a commonly used method to account for model uncertainty 
and to provide a probabilistic forecast of the dynamically 
evolving atmosphere [7, 8, 9, 10, 11]. Multi-physics modeling 
is based on the realization that no single configuration of 
model physics is a perfect representation of the atmosphere 
and that multiple methods to resolve atmospheric processes 
are needed to adequately describe a forecast probability 
distribution function. The availability of a large suite of 
physics options within the WRF model makes it ideal for 
estimating forecasting uncertainty by running multiple 
forecasts for the same period but with different physics 
configurations. 

The forecast uncertainty due to uncertainty about initial 
conditions can be analyzed using a multi-initial condition 
ensemble that executes multiple independent forecast 
simulations from a suite of plausible atmospheric initial 
conditions that are based on uncertainty over the background 
state and meteorological observation error. 

The primary reason for using a multi-physics ensemble is 
based on the observation that the variance in a multi-physics 
ensemble frequently grows at a rate two to six times faster 
during the first 12 hours of a forecast than the variance 
simulated by an initial-condition ensemble [12].  Because the 
focus of this analysis is day ahead forecasting, it is likely that 

the model output from a multi-initial condition ensemble 
would under-represent the uncertainty in the ensemble during 
our forecast horizon because initial condition perturbations 
take time to grow and impact the numerical solution. 
Incorporating the multi-initial conditions analysis would 
substantially increase computation time and analysis effort 
while making little contribution to the analysis of the 
uncertainties in the day-ahead time frame. 

B. Wind and Solar Generator Models and Net Load 

For each of 30 weather trajectories in a multi-physics 
ensemble, the wind speed and shortwave downward radiative 
flux estimated with WRF are used to compute power outputs 
for each of the 5,494 wind and solar sites in the model. For 
wind sites, the wind speed is converted to MW using a Vestas 
V90 power curve [13]. For solar sites, the shortwave 
downward radiative flux is multiplied by a geometric factor 
that takes into account the relative angle between the sun and 
the solar panels at fifteen minute intervals.  It is also 
multiplied by a temperature-dependent efficiency factor, using 
the local temperature. 

The base load used for the year 2020 analysis is the 
realized load in the year 2005 scaled up according to a load 
forecast.  However, the hypothetical weather trajectories in the 
ensemble would also affect the load. To account for this 
effect, the year 2020 base load is adjusted for each scenario in 
the ensemble using a set of coefficients that represent the 
change in load given a change in temperature for given times 
of the day, day of the week, and month.  

Renewable generation is subtracted from the gross system 
load for each member of the weather ensemble.  This load is 
then adjusted based upon the temperature deviation of that 
ensemble member relative to the 2005 weather conditions. In 
this manner, the members of the weather ensemble are 
converted to 30 net load scenarios. 

Initial experiments with the production simulation model 
indicated that optimization with respect to 30 net load 
trajectories is computationally intractable. Hence, statistical 
clustering methods were used to reduce the number of net load 
scenarios to be included in the optimization model. Results of 
this aggregation process are shown in Fig. 2. 

 

Figure 2. Net Load Trajectories in April 2020 



The 30 members of the ensemble are shown as grey lines 
in the figure.  Six representative scenarios are shown as the 
colored lines in the figure. The width of the line corresponds 
to the probability assigned to that trajectory. Note that on this 
spring day in 2020, the net load at 2:00 p.m. may be the lowest 
load of the day. This is due to the large solar photovoltaic 
capacity that is assumed to be on line under the 33% 
renewable scenario.  

III. PRODUCTION SIMULATION MODELING 

The WRF model is used in two modes.  The first mode 
computes an ensemble of equally likely trajectories at the start 
of each day that extend over the full day.  The ensemble 
approximately reproduces the uncertainty that the system 
operator would have had over the conditions for the following 
day. A weighted subset of these trajectories is used in the 
stochastic unit commitment analysis.  In the second mode, the 
model is used to reconstruct the atmospheric conditions that 
existed during 2005, the weather year used for the analysis.  
These synthetic observations reproduce the actual atmospheric 
conditions (primarily wind velocity and solar insolation) that 
were realized during 2005. These synthetic observations, and 
the renewable generation patterns they produce, are used for 
the economic dispatch step in production simulation.  

The PLEXOS production simulation software was used to 
formulate the unit commitment and economic dispatch 
optimization problem [14]. The optimization problem was 
then passed by the PLEXOS software to the CPLEX mixed-
integer programming solver [15]. The stochastic unit 
commitment feature of the PLEXOS software was used with 
hourly time steps. The newly-released interleaved mode 
allowed us to utilize two different time scales – unit 
commitment at hourly time steps and economic dispatch at 
five-minute time steps. 

A. Model Used for Analysis 

A highly-aggregated model of the Western Interconnect 
developed by the CAISO was adapted for the analysis [2, 3].  
The model includes 2,400 generators, 120 transmission 
corridors, and 42 load centers. Loads for the year 2005 were 
scaled up to reflect loads expected for the year 2020. CAISO’s 
High Load scenario was selected for analysis. 

The CAISO model includes constraints that ensure 
sufficient flexible capacity is available to follow load given 
the high uncertainty and variability associated with a 33% 
renewable system.  These constraints were established by 
computing the 95% confidence limits on the hour-ahead 
forecasting error associated with an autoregressive-moving 
average (ARMA) statistical model. One ARMA model was 
developed for each of the four seasons. For this study, these 
confidence limits were replaced by corresponding limits 
associated with our 30 member weather ensemble. Unique 
limits are used for each hour of the year. The value of the 
Lagrange multiplier for this constraint was interpreted as the 
marginal price for procuring flexible capacity to follow load in 
the markets. Similarly, the Lagrange multiplier for system 
constraints on  required regulation capacity were interpreted as 
the marginal price of this service.  

B. Modeling Demand Response and Storage 

Forecast capacity of demand response for each hour of the 
year 2020 was provided by the Demand Response Research 
Center [16].  Three types of demand response capacity were 
provided: (1) firm capacity that is bid into the day-ahead 
market, (2) flexible capacity that can be dispatched at five-
minute intervals, and (3) regulation capacity that can be 
modified at four-second intervals. In general, more firm 
capacity is available than flexible or regulation capacity. For 
example, in Southern California Edison’s service territory at 
4:00 p.m. on August 2, 2020, the forecasts for firm, flexible, 
and regulation demand response capacities are 2,000 MW, 500 
MW, and 400 MW, respectively. Also, more demand response 
capacity is available in the summer.  Capacities of flexible 
demand response for all hours of the year are depicted in Fig. 
3. The capacity would be available for one hour each day. 

 

Figure 3. Flexible Demand Response Capacities 

Four types of energy storage devices were modeled: (1) 
lithium-ion battery, (2) zinc-bromide flow battery, (3) 
flywheels, and (4) compressed air energy storage above and 
below ground. The Electric Power Research Institute and the 
California Energy Storage Alliance provided the energy 
storage capital cost and performance characteristics shown in 
Table 1 [17]. The capital costs are estimated for a 
demonstration plant built in 2013. 

Table 1. Energy Storage Cost and Performance Parameters 

 

Technology 
Capital costs and efficiency 

$M/MW $M/MWh Efficiency (%) 

Li-ion (15 min) 1.25 5 83 

Li-ion (4 hr) 3.6 0.9 85 

Zinc-bromide flow (5 hr) 1.86 0.372 65 

Flywheel (15 min) 1.9 7.6 87 

Copressed air above gr. (5 hr) 2 0.4 70 

Compressed air below gr. (5 hr) 1.5 0.15 70 



C. Computational Challenges and Solutions 

The production simulation model, including demand 
response and storage resources, was solved for each day of the 
year. Multiple configurations of the system were analyzed so 
that a total of 3,000 days were simulated. Each day of 
simulation would require approximately eight hours on a 
workstation, which implies a wall clock time of 2.7 years to 
conduct the entire analysis campaign on a single work station.  
However, the analysis campaign was conducted in 
approximately one month using high performance computing 
resources at Lawrence Livermore National Laboratory with 
thousands of cores. Use of high performance computing 
allowed compression of the time required by a factor of 30.  

IV. PRODUCTION SIMULATION RESULTS 

Computed generation patterns for the original CAISO 
model (without addition of demand response or energy storage 
resources) are shown in Fig. 4. Solar generation provides 
approximately 1,000 MW at noon, but is unavailable by 7:00 
p.m. This drop in availability causes a sharp peak in imports 
and hydroelectric pumped storage usage at that time. Some 
wind energy is available on this day in the evening and early 
morning, which is typical of California. 

 

Figure 4. Generation patters in April 2020 

Marginal energy prices are shown in Fig. 5. As indicated 
in the figure, during the winter, spring, and fall, there are two 
periods of higher prices, while during the summer there is a 
single period of high prices.  This suggests one charging cycle 
for batteries during the summer and two during other seasons. 

 

Figure 5. Marginal energy prices in April 2020 

Prices for load following up are depicted in Fig. 6.  As 
indicated by the data in the figure, prices for load following 
have the same general temporal patterns as energy prices, 
albeit at lower overall levels. 

 

Figure 6. Prices for load following up 

Compressed air energy storage provided the highest net 
revenues (revenues from discharging less cost of energy used 
for charging) from energy arbitrage. The first MW of capacity 
provided $70,000 per year. The first MW of Li-ion and flow 
batteries provided $45,000 and $20,000 MW of net revenues, 
respectively. The marginal value of additional capacity 
decreases by 30% to 50% when 1,200 MW are added to the 
system. Parametric studies indicated that battery discharge 
times of more than four hours provided little additional 
benefit.  

The potential revenues from providing ancillary services 
were also estimated.  Load following up, regulation up, and 
spinning reserve could each provide approximately $100,000 
per year in revenues for the first MW of capacity offered.  

Demand response could reduce annual operating costs. 
The capacity estimates described previously would reduce 
costs of load following by $84 million per year. Regulation 
costs would be reduced by $31 million per year. 



V. REGULATION AND STABILITY ASSESSMENT 

High penetration of renewable generation can exacerbate 
the frequency deviations caused by contingencies in the 
system due to the reduction in system inertia. An 
electromechanical simulation model developed by DNV 
KEMA and other software tools developed for this project 
were used to evaluate system response with and without 
storage providing regulation services [4].  

A contingency involving the loss of 2,000 MW of 
generation capacity was introduced to the system without any 
energy storage capacity providing regulation. The simulation 
was conducted for a March day when there was large amount 
of renewable generation online. The simulation was repeated 
after the addition of 200 MW of storage providing regulation. 
Results are shown in Fig. 7. As indicated in the figure, the 
addition of 200 MW of energy storage reduces the negative 
frequency deviation from -0.1 Hz to -0.07 Hz for this 
contingency.  

 

Figure 7. Frequency deviation with and without storage 

Energy storage providing regulation can also reduce 
cycling of thermal units that are on line. Cycling is measured 
in terms of the sum of the absolute values of the MW of 
instructed changes in output over a given time period.  The 
addition of 100 MW of energy storage on regulation can 
reduce cycling of thermal units on line by 20,000 MW per 
year. 

Batteries on regulation could become completely charged 
or discharged, and hence become incapable of providing load 
following down, or load following up, respectively. Results 
indicate that 200 MW of battery capacity would have a 4% 
chance per day of becoming discharged and unable to provide 
regulation up.  The same capacity would have a 1% change of 
becoming fully charged and unable to provide regulation 
down. 

VI. SUMMARY AND CONCLUSIONS 

This study describes the development of a modeling and 
analysis platform that integrates a stochastic weather model, 
renewable generator models, a stochastic production 
simulation model, and a stability analysis model that was used 
to estimate the value of introducing demand response and 
energy storage into a system with high renewable penetration. 

Estimates of the operating profits that energy storage could 
earn through energy arbitrage and sale of ancillary services 
were developed. Estimates of the value that demand response 
could provide were also developed.   
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